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An exact analysis of spontaneous emission by a single two 
level atom in the rotating wave approximation 
I. Analytic results 

S SWAIN 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University 
of Belfast, Belfast BT7 INN, UK 

MS received 18 May 1972 

Abstract. The problem of a single two level atom in its excited state, placed in a cavity in 
which no photons are present initially, and interacting with N modes of the electromagnetic 
field, is solved exactly in the electric dipole, rotating wave approximation. Expressions for the 
energy eigenvalues and eigenvectors are derived, and an exact representation for the time 
dependent wavefunction of the system is given. These quantities are evaluated analytically 
for N = 1,2 and 3, and the time dependent properties of the system for these values of N are 
investigated and discussed. In the following paper results for larger values of N which have 
been found numerically are presented. 

1. Introduction 

The system we consider in this paper is that ofa single, two level atom which is coupled to 
N modes of the electromagnetic field. The interaction between the atom and the field 
is assumed to be electric dipole, and the rotating wave approximation is made, but within 
the framework of these approximations the model is solved exactly. The initial state of 
the system is that in which the atom is in its excited state and no photons are present, so 
that the atom will begin to decay by spontaneous emission. We find the exact energy 
eigenvalues and eigenvectors of the Hamiltonian, and use a linear combination of the 
latter (with time dependent coefficients) to represent the time dependent wavevector of 
the system. We thus obtain an exact expression for the state vector which can be used to 
calculate the time dependent properties of the system, such as the probability that a 
photon will be present at a certain time. 

This model, although obviously a simplified one, is of some importance in quantum 
optics. Most quantum mechanical theories of the laser, for example, are essentially one 
atom theories (eg Lamb and Scully 1967)-the results for NA atoms simply being taken to 
be N ,  times the results for one atom (Fleck 1966). Thus exact treatments of this model 
are of considerable interest, not only for the results which can be derived from them, but 
also as a yardstick in judging the validity of more approximate calculations. For these 
reasons we analyse this model in detail. 

Previous work in finding exact solutions ta the eigenvalue problem was performed 
by Jaynes and Cummings (1963) who considered a single atom interacting with a single 
field mode. Fleck (1966) gives a more detailed account of their solution. Tavis and 
Cummings (1968) presented exact results for the Hamiltonian in which NA atoms interact 
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1588 S Swain 

with one mode of the field at resonance (ie when all the atoms have identical energies 
and this energy is equal to that of the field mode). Walls and Barakat (1970) and Scharf 
(1970) independently found solutions to this problem. Mallory (1969) has treated the 
more general case in which the field mode and the atoms need not be in resonance. The 
multimode case has been treated by Swain (1972a) who found solutions to the problem 
in which N modes of the field (with arbitrary frequencies) interact with NA identical 
atoms. Walls (1971) has applied somewhat similar methods to problems in nonlinear 
optics. Mallory and Scharf use methods based on the Bargmann representation for 
the field states, whilst the other authors quoted work with the number representation. 

In all the treatments of the NA atom problem listed so far the atoms were assumed 
to be situated completely within a volume small compared to the wavelength of the field 
mode(s) so that they could be represented by a set of pseudospin operators of magnitude 
+ N A .  (In addition, the use of the pseudospin representation requires that all the atoms 
have the same energy.) Swain (1972b) has been able to relax these conditions and so 
give a solution to the problem of N field modes interacting with N A  atoms which need 
not be localized in space nor have identical energy separations. 

The problem we consider is related to the more general problem of spontaneous 
emission by an assembly of atoms which was first studied by Dicke (1954). He found 
that under certain circumstances the radiation rate is proportional to the square of the 
number of atoms-a phenomenon which is known as super-radiance. Many authors have 
further considered this problem, both in the case when the atoms are confined to a region 
small compared with the mode wavelength and when they are distributed over a large 
volume (see, for example, Bonifacio and Preparata 1970, Dialetis 1970, Eberly and 
Rehler 1971, and Arecchi and Courtens 1970). (This is not intended to be an extensive 
bibliography.) We shall give a numerical analysis of the Dicke problem in a later publica- 
tion. 

The closest approach to our work is to be found in the series of papers by Davidson 
and Kozak. In the first of these (Davidson and Kozak 1970a) they use a master equation 
approach to investigate the decay of a single, initially excited atom which interacts with 
all the modes of the electromagnetic field. (The limit as the volume of the system tends to 
infinity is taken.) In the second paper (Davidson and Kozak 1970b) they consider the 
case when the volume is finite, which leads to consideration of Poincark recurrences. 
Their solution has some unphysical properties in that they find that the probabilities 
they calculate can sometimes be negative. This point is taken up in the third paper 
(Davidson and Kozak 1971) where they also find an exact expression for the probability 
of one atom interacting with all the modes of the electromagnetic field being in its 
excited state at time t .  

Our treatment differs from theirs in that we use a different approach and give a 
more general (and more complete) discussion of the problem. Thus we calculate the 
exact eigenvectors, eigenvalues and time dependent wavefunction of the system whereas 
they concentrate on the calculation of probability amplitudes. In the main we restrict 
our attention to the calculation of the properties of a system with a finite number of 
field modes (although our equations are applicable to the case of an infinite number of 
modes) whereas they are concerned exclusively with the infinite number of modes 
problem. Their main objective is a comparison of quantum mechanical and quantum 
statistical approaches to the same problem. 

In this paper we derive the fundamental formulae and give exact analytic results in 
the cases N = 1,2, and 3 for particular energy level schemes. In the following paper we 
give numerical evaluations of the expressions derived here for larger values of N .  
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In 8 2 we describe the model and discuss briefly the rotating wave approximation. 
Exact eigensolutions appropriate to the problem of spontaneous emission by a single 
atom are derived in 8 3, and an exact representation for the time dependent wavefunction 
is obtained in 4 4. In 6 5 analytic solutions to the cases in which one, two and three modes 
interact with the atom are given. 

2. The model Hamiltonian 

The Hamiltonian for a single two level atom interacting with N modes of the electro- 
magnetic field in the electric dipole approximation is 

N N 

A =  1 A =  1 
H = (ala, + $)U, + (a3 + $)ao + (g,a,o+ + g,*al o-) 

(we use a system of units in which h = 1). Here a: creates a photon in the mode i, whose 
frequency is w, and wavevector k , .  The operators r~', o- and a3 are spin operators and 
are used here to describe the two level atom. They are defined by their action on the 
energy eigenstates of the unperturbed atom, which are If) and I - 3). Thus 

a31a) = ala) a = +L - 2  (2) 

a'Ia) = d(a++)I+$) O-Ia) = d(a-+)l-2) (3) 

and 

where d(a - x) = 1 if tl = x, and is zero otherwise. wo is the energy separation of the 
two atomic levels. g, is the coupling constant and is given explicitly as 

g, = - i(27cw,V)- 1'2d. U, (4) 

where I/ is the volume of the system, d is the dipole matrix element, and U, is the Ith 
normal mode function for the cavity evaluated at  the position of the atom. 

The final term in (1) contains the so called antiresonant contributions, and it is almost 
universal in calculations in quantum optics to neglect this term. (This is the rotating 
wave approximation (RWA).) Although there is no a priori justification for neglecting 
the antiresonant terms, it seems reasonable to assume that their inclusion would produce 
quantitative differences in the curves obtained using the RWA, but no significant qualitative 
changes, at  least if the coupling constant is sufficiently small. In a perturbation treat- 
ment, the terms neglected would always be small compared to the ones retained, and 
their omission presumably implies that certain small shifts and high frequency modula- 
tions have been omitted. Thus the rotating wave approximation is expected to provide 
a realistic description of the behaviour of the system. However, caution must be exercised 
in the use of the RWA because the full interaction connects more states than does the 
RWA. For example, if we consider a system with only one atom and one field mode with 
an initial state I-$)lO) corresponding to the atom being in its ground state with no 
photons present, then in the RWA this state is connected to no other state, whereas with 
the full interaction, the state I +$)Il) is connected. Thus if one is considering a problem 
in which such transitions are important the RWA could lead to incorrect conclusions. 
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It is also convenient to change the zero of energy so that the zero point energy 
XI &I of the electromagnetic field and the term $wo in (1) may be set to zero. When these 
measures are taken the Hamiltonian becomes 

Y N 

We present an exact study of this Hamiltonian in the subsequent sections. 

3. The eigensolutions 

It has been shown (Swain 1972a) that the exact eigenvectors Of (5) are of the form 
X 

19, c> = C 1 A&, 
n = O  1 =  * 1 2 

where c is an eigenvalue of the operator 

and q is an eigenvalue of the operator 

Q = 1 ( u ~ u ~ ~ , ~  + gAu,o+ + g,*a:a-) W I , 0  = wi -wo .  
1. 

It is clear that 

H = Cwo+Q. 

From (7), the allowed values of c are evidently c = -4, ++, 14 . .  . . The vector n labels 
the set of non-negative integers n = (n , ,  n,, . . , , n N )  and X,“=o = 2; = o  Xn2=0 . . . Z n N  =,,. 
The numerical coefficients AJn,  a) must satisfy the relationship 

m m 

for every set n, a which satisfies the relation 

c = C n , + a .  
I 

Here n’, n, + 1 = n l ,  n,, . . . n,- 1 ,  n, + 1, n, + . . nN. In) is an eigenvector of the number 
operator X, .XuI. 

Equations (10) and (1 1) clearly define a set of linear inhomogeneous equations; the 
condition that the set have consistent solutions leads to an eigenvalue equation for q. 
When q has been found, it is clear from (9) that the eigenvalues of H corresponding to 
the eigenkets (6)  are cwo + q : 

Hlq, c> = (two + 4)  14, c>. (12) 

We are now in a position to determine the eigenvalues and eigenvectors appropriate 
to a single atom initially placed in the cavity in an excited state with no photons present. 
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The initial state vector is 

l4w) = IO, 0, .  . . , 0 )  I + $ > e  

I$(O)) as defined by (13) is an eigenvector of C belonging to the eigenvalue co = 3 
(corresponding to n = 0, a = +$). We note that C commutes with H, and thus If the 
system is initially prepared in an eigenstate of C having eigenvalue c, it will remain in 
an eigenstate of C belonging to the same eigenvalue c for all time. Thus a complete 
set of states for describing a single atom placed in its excited state in a cavity at t = 0 
with no photons present initially is obtained by listing all the eigenstates of C belonging 
to the eigenvalue co, that is, the set In) la> for all values of n and a such that 

Cn,+a = + (14) 
i. 

is satisfied. 
Apart from n = 0, a = 3, the only other sets of n, a which satisfy (14) are 

(15) 

The complete set of equations (10) for the given value of c = co is then 

- 4B,(O) + 1 g,B,(4 = 0 (16) 

(17) 

1 n = 0, a = +z: 
i. 

n’ = 0, nK = 1, a = -1. 2 .  ( O K 0  - 4)B,(K) + glt.B,(O) = 0 

where 

and 

B,(K)  = A1,2,q(0,0, * * * , l,, . . . ,o, -$). 

4 - 1 - -  

(19) 
The system of equations (16) and (17) has a consistent solution if 

- 0. (20) 
1M2 

14-O, ,0  

If this is solved for the q, then the B,(I) are given in terms of B,(O) by 

where henceforth q is to be interpreted as one of the solutions of (20). Consequently 
the set of eigenvectors of (5) having c = 3 is 

and these belong to the eigenvalue of (5) 

E(+,  4)  = (+U0 + 4). 
By requiring that (22) be normalized we find 
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Thus (24) determines B,(O) apart from an arbitrary phase factor, which is of no physical 
significance, as all the physical properties calculated depend upon IB,(O)(’, and not B,(O). 
The eigenvectors (22) with B,(O) given by (24) are orthonormal : 

( 2 5 )  

Equations (21H25) give exact expressions for the eigenvectors and eigenvalues of the 
(3, q l f ,  q’) = (vq-q’). 

Hamiltonian ( 5 )  appropriate to spontaneous emission by an isolated atom. 

4. Time dependent properties 

We are interested in calculating the evolution of the system from the particular initial 
state 10,0,. . . , 0 )  + f) corresponding to no initial excitation of the field and the atom 
in its excited state. Since this ket is an eigenket of C (belonging to c = f) we can expand 
the state of the system at time r in terms of the kets I f ,  q ) ,  that is, we may write 

The sum over q extends over all the allowed values of q as determined by (20). If we 
substitute from (26) into the Schrodinger equation 

we can solve for P(q, t ) .  Since 13, q )  is an eigenstate of H belonging to the eigenvalue 
(23) we easily find that 

P(4, t) = exp( - i(3WO +4)t)P(4> 0). (29) 
To evaluate P(q, 0) we make use of the fact that I$(O)) is given by (27): 

I$(O)> = c P(4, 0)  I f ,  4 )  = IO, 0, . . . , o >  I ++). (30) 

Taking the scalar product of (30) with I f ,  q’) and making use of (22), and (25), we find 
4 

Combining (26), (29) and (32), we find 

I$@)> = exp( - 4iod B,*(o) exp( - iqt) I f ,  4 )  (33) 
4 

for the exact time dependent state vector for the system. (B,*(O) is given by (24).) 
Once this ket is known we can calculate the time dependent properties of interest. 

For example, the probability that there is a photon in the mode 1” at time t is given by 
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On using (33) and (22) in (34), we find that the only value of CI which contributes is 
CI = -4, and (34) reduces to 

Similarly, the probability Po(t) that there are no photons in the field at time t is given by 

PO(t) = I(.l(O, 0,. . . , 0 lW> l2  (36) 

(37) 

Po(t) may also be interpreted as the probability that the atom will be in its excited state 
at time t .  

In the numerical work which follows we have concentrated in the main on calculating 
Po@) because, apart from its own importance, it is simply related to other properties of 
interest. For example, in the case of photon counting distributions (Pike 1969) the 
quantity one wishes to calculate is p,(t), the probability that there are n photons in the 
field at time t .  Now for the problem we are considering, the choice of our initial state 
and the fact that C as given by (7) is a constant of the motion implies that there can 
only be on average one or no photons in the field at any time, and so 

a =  * l j2  
2 

= 12 I B , ( o ) ~ ~  e-'"/ . 
4 

PO(t) = PO(t), Pl(0  = 1 -Po(O. (38) 
Thus in this case the photon counting distribution is very simple. (See Bonifacio and 
Preparata (1970) for the more interesting calculation of the photon counting distribu- 
tions for the case of N ,  atoms interacting with one mode on resonance.) 

Also the mean number of photons present in the field at time t ,  ii(t), is given by 
m 

= 1 n P n ( t )  

= 1 -Po@) 
n = O  

on using (38). 

5. Analytic results 

In this section we derive exact analytic expressions for the cases in which the atom 
interacts with one, two, and three light modes respectively. The behaviour of the 
system in these simple cases has many features in common with the behaviour in the 
many mode case (see paper 11). The energy level schemes for the three cases are shown 
in figure 1. We have shown these energy level schemes because the analytic forms of 
the expressions obtained are particularly simple in these cases. It is straight forward to 
solve (20) for the eigenvalues q using elementary (but sometimes lengthy) algebra, and 
hence calculate the other properties of the system. We do not give details of the calcula- 
tion but present only the results. 

5.1. One mode 

This problem has been treated by Jaynes and Cummings (1963) and Fleck (1966), but 
it is of interest to discuss the results here so as to compare them with more complicated 
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0- 1 0- 1 
Figure 1. The unperturbed energy level schemes for (a) one, (b) two and (c) three modes 

cases. From (20), the eigenvalues q appropriate to the energy scheme for one mode 
given in figure 1 are 

q* = 9{6*(62+4/g,12)”2). (41) 

Having regard to equation (23) which specifies the eigenvalues of H we see that (41) 
implies that the energy levels of the interacting system are placed symmetrically about 
the average energy of the atom and the mode for the noninteracting system. We note 
that if d2 << 41g,I2 then the energy eigenvalues (belonging to c = 3) for the perturbed 
system, which are approximately ioo+lgl,  are very different from those of the un- 
perturbed system (also belonging to c = 3) which are +ao, ioo + 6. The above condition 
corresponds to the limit of very strong interaction between the atom and the field, and 
in this limit the eigenkets IO)/ +$) and’ 11)1-$) of the unperturbed system contribute 
equally to the eigenkets # , 4 )  of the perturbed system given by (22). 

Substituting from (41) into (21) and (37) for B,(O) and Po@) we find that 

and 

We note that (43) implies that only if 6 = 0 does Po(t) oscillate sinusoidally between 
0 and 1. For 16) > 0, the minimum of P&) is S 2 / ( S 2  + 4)g,I2) so that the probability of 
the atom being in its ground state is never unity. When 161 is very large (S2 >> 41g,I2) 
it is clear that 1 2 Po(t) 2 1 -41g,12/62 so that Po(t) deviates only slightly from the 
value one. This is consistent with the interpretation that when the atom and the field 
have very different energies the effective interaction between them is small. 

5.2. Two modes 

For the two and three mode situations it is necessary to make the assumption that 
(gal2 is independent of the mode I in order to obtain manageable algebraic expressions. 
This will normally be a reasonable approximation providing that the total separation 
in energy of the field modes is small (ie if 161 << oo in the two mode case), but it is an 
approximation often made when this is not so (eg Davidson and Kozak 1970a) par- 
ticularly when dealing with an infinite number of modes. The exact functional form 
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of g, depends on the shape of the cavity through the factor u1 in (4), and rather than 
assume an explicit functional form for g, appropriate to a particular cavity it is pre- 
ferred to take the simplest case, g, = constant. 

If one makes this assumption one finds for the allowed values of 4 in the two mode 
case 

q0 = 0, 4* = f (~~+21gl ’ ) ’ /~ ,  a = ;d. (44) 

By referring to (23), it is apparent that if a2 << 21gI2 (effectively a very strong interaction) 
the energy eigenvalues in the perturbed system differ considerably from those in the 
unperturbed system. On the other hand, if a’ >> 21g1’ (very weak interaction) the 
eigenvalues are approximately the same in both the perturbed and unperturbed systems. 
This is analogous to the one mode case. 

After some algebra one obtains the following expressions for the IB,(O)l: 

Using (44) and (45) in (37) we find 

Po(t) is equal to unity whenever 

t = nrc/$, n = 0,1,2 , . . . ,  (48) 
but it is apparent from (46) that Po@) is never zero if the condition a’ > 21gI2 is satisfied. 
Hence if the mode spacing is sufficiently large the probability of the atom being in its 
ground state is never unity. 

For the two mode case it is also of interest to calculate p + ( t )  and p - ( t ) ,  the prob- 
abilities that a photon will be present at time t in modes with energies oo+a and 
oo -a respectively. From (33, (44) and (45) we find, after some algebraic simplification, 
that 

This function is zero whenever cos(&) = 1, that is whenever (48) is satisfied. 
In the strong interaction limit, U’ << 21g(’, (46) and (49) reduce to 

whilst in the weak interaction case, U’ >> 21gI2, they give 
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Thus in both the strong and weak interaction limits sinusoidal behaviour is obtained. 
Somewhat similar behaviour also occurs in the many mode cases. 

In figure 2 is plotted Po(t) for the intermediate case a2 = /gI2 as a function of the 
dimensionless ‘time’ Iglt. It is seen to be a periodic function with alternatively high 
(Po@) = 1) and low (Po(t) - 0.61) peaks. As the ratio az/lgl2 is decreased (increasing 
interaction) the height of the lower peak gradually increases, approaching the value 
unity as a2/lg12 tends to zero. This is the limit (50). As the ratio a2/lg12 is increased 
(decreasing interaction) the height of the lower peak gradually decreases, until beyond 
the value 2,P0(t) is never zero, and as a2//gI2 increases indefinitely the limit (51) is 
obtained. 

0 

Figure 2. Po as a function of r in the two mode case for a2 = /g/’. 

We emphasize that the behaviour of Po(t) and p + ( t )  in the two mode case described 
here is always periodic; this is to be contrasted with the three mode case. 

A useful measure of the extent to which the energy is distributed over the field 
modes and the atom is provided by the following quantities, Po,  p + ,  p -  which are defined 
by the relation 

i r T  

p = lim ‘J p(t)dt. 
T + ~ T  

They may be calculated from equations (46) and (49) by noting that 
I r T  I r T  1 

lim LJ cos2(qt)dt = lim - sin2(qt)dt = A 
T - ~ T  0 T - + =  i?, 2 

whilst the integrals of cos@) and sin(@) alone vanish. Hence we find 

a4 + 21gI4 
o - (a2  + 2/g12)2 

P -  

and 

(52) 

(53)  

(53) and (54) give the average distribution of the total energy of the system over its 
constituent parts-the atom and the two field modes-as a function of a* and 181’. 
(Actually, (53) and (54) depend only on the ratio a2/lg(2.) Note that as the limit a2 >> 21gI2 
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is obtained, Po + 1 -41g(2/az, j j *  --f 21glz/az so that the energy tends to reside entirely 
in the atom in the weak interaction limit, whilst in the opposite limit, a2 << 21gI2, we 
find Po + 4, j j *  + $ so that the energy is divided in the first place equally between the 
atom and the field and in the second place, equally between the two field modes. For 
the case plotted in figure 2, a’ = 1gI2, Po = 3 ,  and j j *  = 5. 

5.3. Three modes 

In this case, (20) has four solutions for q corresponding to the four eigenvalues of H 
(equation (23)). These are k q + , k q - where 

We note that in the one, two and three mode cases the energy eigenvalues for the inter- 
acting system are symmetric about the mean of the unperturbed energies of the atom 
and the modes. 

B,(O) is found to be an even function of q : 

Using (55) and (57) in (37) and (35) we obtain the following expressions for Po(t) and p , ( t )  : 

(58) 
1 

Po(t) = -{r+ cos(q+t)+r- cos(q_t)}’ 
X 

where 

In contrast with the one and two mode cases, Po(t) can take the value zero (for 
infinitely many values oft) whatever the relative magnitudes of lgl and 6. It is reasonable 
to associate this property with the fact that we always have a mode on resonance with 
the atom. 

In further contrast with the one and two mode situations the functions defined in 
equations (53), (54) and (55) are no longer periodic functions, but belong to the class of 
‘almost periodic functions’ (Bohr 1947). If we take Po(t) as an example, this implies 
that Po@) has the value unity at t = 0 and at no other time. However, it will take a value 
arbitrarily close to unity (say 0.99) an infinite number of times. This is connected with 
the problem of Poincark recurrences (Bocchieri and Loinger 1957, Percival 1961). 
Thus if Z(E) is the mean time interval between occasions when Po(t) has the value 
Po(t) = 1 - E, t(c) is the PoincarC recurrence time. 

In figure 3 we have plotted Po@), po(t) ,  and p * ( t )  as functions of the dimensionless 
‘time’ lglt for the case where 6 = lgl. Comparison with the periodic behaviour in 
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0.4 

0 2 4 6 0 IO 12 14 
r 

Figure 3. Po, po and p* as functions of 5 in the three mode case for 6’ = lg12 

figure 2 shows clearly the almost periodic behaviour of Po(t). For the time range plotted 
here the energy never resides entirely in the mode at resonance, but at the time lglr = 2.4, 
for example, practically all the energy resides in the two outlying field modes. At the 
times lglt N 4.9 and lglt z 13.0 the probability of the atom being in its excited state is 
a considerable fraction (greater than 0.9) of its original value. The events occurring 
at these times are the Poincare recurrences, but they are not so sharply defined in this 
system as they are in a system with many degrees of freedom (see paper 11). 

In the limit of strong coupling, h2/1gI2 -+ 0 the dominant terms in Po([), p o ( t )  and 
P + O )  are 

p o ( t )  - +sin2(J31glt) h2  << 1gI2 (62) 1 p o w  - cos2(J31glt) 

P d t )  - +sin2(J31glt) 

(Compare (50) where the argument of the trigonometric functions is J2lglt.) In the limit 
of weak coupling, J2/lgI2 + x, we find that the dominant terms are now 

I 

Pi([) - 0 I 
( p + ( t )  has an amplitude of the order of lgI2,/d2.) Equations (63) contrast strongly with 
equations (51); the different type of behaviour is clearly due to  the presence of the mode 
on resonance. 

As in the two mode case, a useful measure of the extent to which the energy is distri- 
buted over the atom and the field modes is given by the quantities P o ,  Po, and p+ ,  
which are easily calculated from (53), (54) and (55). We find 
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and 

lg12 3(A2 + 1) 
2x 2x j j *  = -(262 + q: + 4 5 )  = 

where in the second half of these equations we have used (55),  (56) and (61) for 4 & ,  x, 
and r +  to simplify the expressions and to write them in terms of the dimensionless 
variables 

A = S/lgl X = x/lgI4 = A 4 + 2 A 2 + 9 .  (67) 

These expressions give the average distribution of the total energy of the system 
over its constituent parts as a function of the mode separation measured in units of the 
coupling constant. Note that in the weak coupling limit (A + 03) we have 

P o + j j o + t  p + _ + O  ( A * + o c ) )  

so that the energy tends to be distributed only over the atom and the mode on resonance, 
when the energy separation of the two outlying modes becomes large (as we might have 
expected). In the strong coupling limit (A -+ 0) we have 

Po++ j j o - - + j j * + ~  

so that in this case, as in the two mode case, the energy is divided in the first place 
equally between the atom and the field, and in the second place, equally amongst the 
three field modes. In the intermediate case, A2 = 1 (which we have plotted in figure 3) 
the values 

P o = +  P o = +  j j *  z 4  1. 

are obtained. 
In figure 4 we have plotted Po,  po and p* as functions of A for the range 6 2 A 2 0. 

An interesting feature of the curves is that for values of A < 3, more energy is concen- 
trated in each of the outlying modes than in the mode on resonance, which is perhaps 
unexpected. Only in the extreme weak coupling limit is more energy concentrated in 
the resonant mode than in the outlying modes. We note that all three functions have 
turning points. 

0 5\ I I I I I 

0 . 4  L 1 

I I I I I 
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2 4 6 0 

Figure4. Po, Bo and p* as functions of A in the three mode case. 
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As will be seen in paper 11, the three mode case just discussed has many features in 
common with the N mode problem when N is large and there is a field mode on 
resonance with the atom. Examples are the almost periodic behaviour of P,,(t), and 
the approximately sinusoidal behaviour in both the weak and strong coupling limits. 
It is therefore a useful analytically soluble model to study before tackling the more 
difficult N modeproblem. Likewise the two mode problem has many features in common 
with the N mode problem in which there is no mode on resonance with the atom. 
However, for the particularly symmetric energy level scheme we have chosen in the 
two mode case, the almost periodic behaviour is lost, and F',,(t) becomes truly periodic. 
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